IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Discontinuous media and underdetermined scattering problems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 4253
(http://iopscience.iop.org/0305-4470/25/15/030)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:53

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 25 (1992) 4253-4268. Printed in the UK
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34095 Montpellier cedex 5, France
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Abstract. The problem of ambiguities in trying to determine a shape by means of scattering
experiments, with one or a few illuminating angles and all directions of receivers, is
discussed by means of numerical experiments. The model equation gives a good representa-
tion of scattering of scalar waves which can take into account impedance discontinuities
inside the scatterer. Physical problems include, for instance, acoustical waves in media
where the density p and the Lamé parameter A may vary continuously everywhere except
across a finite number of smooth surfaces through which they jump. For the sake of
simplicity, results are illustrated here in the two-dimensional case, with one discontinuity
curve. The input is a closed curve of arbitrary shape, with arbitrary boundary conditions,
chosen in such a way that the quadratic approximation (Born term+second-order term)
is valid. The scattering amplitude is calculated for one incident angle. Then a circular curve
is calculated, with appropriate boundary conditions, which yields the same scattering
amplitude within the approximation. Variations of incident angles, frequencies and shapes
are discussed for the calculated examples. The relevance of these results in the theory of
non-destructive sensing is obvious.

1. Introduction

The problem of ambiguities in trying to determine the discontinuity shapes inside a
material by means of scattering experiments with one or a few sources and all directions
of receivers, is of obvious physical interest as well as importance in applications. In
a previous paper [ 7], Sabatier gave the scattering theory corresponding to the impedance
equation, with discontinuity surfaces corresponding to a jump in impedance and/or
its normal derivative. Between these surfaces, the material was assumed to be
inhomogeneous, but with a smooth variation of parameters only, such that the im-
pedance was twice differentiable. This model is recalled in section 2 and adapted to
the two-dimensional case, which was not treated in [1]. In particular we give the
formulae for Born and quadratic approximations for the scattering amplitude when
the jumps of impedances and derivatives across the discontinuity curves are small,
together with their variations in continuous parts. For the sake of simplicity the
numerical experiments, described in section 3, focus on the case of one discontinuity
curve and no impedance variation elsewhere. Equivalent shapes (with appropriate
discontinuities of impedance and derivatives) are shown and discussed.

2. The scattering problem

We start from the impedance equation
(a™?div a’grad+ k= V(x))e(k x)=0 (2.1)
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where k, x € R?, & >> 0 is defined inside domains @4, Q,, ..., Qn., such that £, Nl =
@ for any i#j,R*=2)""'{1;, and 8Q, =S, is the external boundary of (),, and the
internal boundary of (};,,. The domains are ordered from Q, to Qx+1 and all finite
except {dn.,, which extends to infinity in all directions. In addition we assume that
each S; is €% and « is €” inside R*\S, where S=J[L, 8, with o(x) and da(x)/av,
going to finite limits at any point x; € S;, and v being a normal vector to S; pointing
outward, i.e. in },,, towards S,.,. At any point x, < S, labelling the + and — sides
of v, as external and internal parts, we can characterize the jump of « and its derivative
throughout S, by the following ‘singular data’
transmission and reflection factors

1.1 [5'-‘%5%]
i o

2le, a,

slope factor

R Kl

1 da; daj
— e [gra +ap_gra _46!&:1
2 o, o,

It is easy to see that if @ and B have the same singular data at x, on S,, a/fB is
continuous across S, at x, together with (o grad 8 — g8 grad «) » v. The solution ¢ is
to be continuous through R?, together with a’(3¢/av). Now the basic equivalences in
this problem are expressed by the following theorems, where o and ¢ defined as above:

Theorem 1. If B=>0 is GXRAS), where S=IJN, S, whereas a/B is continuous
through § together with a(38/av)— B(sa/év), and cAB —BAa =0 at any x e R\,
then §r'= ag/ B is a solution of

(B 2 div B2 grad+k* - V(x))(k,x) =0 xeR\S (2.2)
o and B are called ‘standard equivalent’, i.e. they correspond to the same scattering
problem.
Theorem 2. The function ¢ = ayp is a solution of the chain of Schrddinger equations
(A+ K= V—a'Aa)p(k,x)=0 xeR:7S (2.3)
linked by the
continuity through § of /o and a(3y/dv}—y(da/av). (2.4)
The impedance scattering problem was studied by Sabatier (1] in the three-
dimensional case. Here we write the results in the two-dimensional case, because the
result we want to show belongs to this case. Because of theorem 2, there always exist
two equivalent formulations of the same physical problem and it is useful to go back

and forth from one to the other. In the impedance formulation of the scattering problem,
¢k, x) is sought such that

(e diva’grad+ k*— V(x))p(k x)=0 xeR? (2.5)

¢, = a(x)e(k, x) —exp[ik- x] is Sommerfeld outgoing, i.e. in two-dimensional cases

(i-grad qv,(x))—iksos(x)£0(!x—|l.ﬁ) |x| 0. (2.6)

YRl / d ‘
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In the Schrddinger chain formulation, ¢{k, x) is sought such that

(8+K~V-a'Aa)p(kx)=0  xeR:\S (2.7)
a+(X)w_m—¢+(x)$l=a-( )adl (x)_w ( )BC!' :x)

Y (x)/ et (x) =g~ (x)/a"(x) xes (2.8)
yr(k, x) —eXp[lk-x] is Sommerfeld outgoing. (2.9)

As in the three-dimensional case, it is possible to prove that one can construct a Green
function that corresponds to discontinuities without potentials, i.e. which is a
solution of

(A +K5)G(x, y)=—8(x—y) x, yeR? (2.10)

completed by (2.8) and the Sommerfeld condition (2.6). This Green function can be
constructed by means of the Helmholtz Green function

i
O(x,y) =7 HP (k|| x—y) x, yeR%, x#y (2.11)

and by solving surface integral equations with compact operators, i.e. G(x, y) is
identified as the resolvent kernel of the following system.

(A +E)u(x)=—f(x) xeRAS (2.12)
a"r(x)w—()c)—u'*(x)ﬂ)-:a_(x)M—u*(x)M (2'13)
av av
wr(x)at(x)=u(x}/a"(x) xe 8§
u(x) is Sommerfeld outgoing {2.6). (2.14)
u(x) reads
N N
u(x)=F(x)+ X J‘ ds(z)P{z, x)¢;(z}+ X J. i(z) (2.15)
i=1Js, i=1Js
with
Fix)= J , ds(z2)®(z, x) f(z) (2.16)
u(x):'[ 2ds(z)G(z,x)f(z). (2.17)

As in the three-dimensional case u(x) satisfies (2.12) and the Sommerfeld condition.

e Astarmion th tha Anats u ranAditicaas (7 12) nend wa hava
YL UCLTITIING (,y_,. a.uu l,u wu.u the buuuuuu_y CONGiuons {(4.15) ang w nave

W =2BF+BSé + BKy
{¢+"/t!l=2,BP’—2;3’F+BT¢—ﬁ'K¢+3K'¢_BaS¢ (2.18)
with
= for xe S,
ﬁ(x)=M B'(x) _a"(x) e (x)

a'(x}+a (x) a’(x)+a(x)

a ™ (x)+a " (x)

rix)= a(x)+a (x)
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and the surface operators S, K, K', T defined from a surface S; to S; by:

(SpfYx}y=2 L. ds(z)®(z, x)f(2) xes; (2.19)
(Ki,-f){x)=2‘|.5l ds(Z)gg):(z,x)f(Z) xe§; (2.20)
(Kijf)(x)=2j xes, (2.21)
(Tyf)x)=2 " L x€eS;. (2.22)

We have the following result:

Theorem 3. We assume that 8, 8, v, ¢ are in €'(S) and ¢ in €(S). If N(1-8K)=0
and N(1—-B/(1+ %) =0, then the system (2.18) has a unique solution

¥ =(1-BK) 'B(2F+S¢) (2.23)
¢ =[(1+8%)1—-B] 'AF (2.24)

with:
=2BF -2[8'+(yl+ B’ K-8T)(1-BK) 'B]F (2.25)
B=—-(y1+8'K)(1-8K) 'BS8+BK'-8'S+C. (2.26)

where the operator C is complex and O({||%) as ||8] = 0.

That A and B are compact operators was proved in the three-dimensional case [1]
and can be proved in the same way for two dimensions. Then one can use G(x, y) in
order to derive the Lipmann-Schwinger equation of the problem

#(k, x) = giy(k, x)— Lz\s G, Y)[V(y)+a 'Aa(Mplky)dy  (2.27)
where xeR*\ S and

btk [0 22y 2900 [y )

a ¥ »
ikey .
+{e if xEQ.NH (2.28)
0 atherwise,

Hence the scattering is separated into two steps, the scattering by discontinuities, and
that due to diffuse scattering in the presence of discontinuities. The former is described
by #,,, which is equal to {2.28) but can also be obtained as the solution of

(A+ k) ialk, x) =0 xeRA\S

in
Wi/ a and & L
av

— Y g_a continuous /S (2.29)
vV

Win(k, x) —exp[ik+ x] is Sommerfeld outgoing.

We have too, a relation between t;, and G(x, ¥):
illk||x|+m/4]

(87"|k|)”2|x|w¢m( ,V)+0(| |I’I2) ‘when |x|—>oo’_ (2.30

Applying Green's theorem to ¢,(k, y) and ®(x, y) inside |y| < R, and fetting R - <0,
we obtain

G(x,y)=

. 1 eilklmrel
Yin(k, x)=3'k'x_(8_n_|k|)u2 [x|"72 Aollk|%, k)+o(| ||/z) (2.31)
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Substituting this result in (2.27) yields

ill&llx|+7/4] 1
dlk, x)=iinlk, X)—W Ak Z, k)+o(l lm) (2.32)
and combining with (2,31} finally yields
‘ [kl x|-+m/a]
bk, xy=e**~ _e_T'ﬁA(Iklx k]+0( ! \ (2.33)
(8| k])™ "\ x]" \[x|*?/

where A= Ay+ A, is the sum of the scattering amplitude due to reflectors only and
the diffuse scattering, the reflectors being present.

1t is possible to trace back in the calculations the first and second-order terms with
respect to the potentials size and to r,, s,, ,. The procedure is the following: with the
hypothesis of theorem 3, we obtain the expansion up to second order of ¢ and ¢

& =28F —28'F+2B8TBF —28'KBF + 28K 'BF’
~2BK'B'F—2B'SBF'+28'Sp'F+ O(| 8]*) (2.34)
¢ =2BF +2BKBF+2BSBF —28S8'F+ O(| 8|

where || is Sup([|Bli«'¢s)» 1B «'cs)) and it is easy to see that if ||| is small enough,
the conditions of validity of theorem 3 hoid. We buiid G(x, y} and deduce 4, with
(2.30} and we get the scattering amplitude at the first (Born approximation) and second
order (quadratic approximation).

Then one can reduce the result to its simplest form by using the standard equivalence
to obtain the Born approximation

Ak, k)=~-2 g J ds(z)ﬁ(z)—[el(k Mraj4a ¥ j ds(z)B'(z) gl(k—K)
K 5

j=0 J=0
+I [V(y)+a'Aa(y)] &7 dy (2.35)
RS

and the quadratic approximation (only A, is given}):
¢ .
Ayl k) = —2 J ds(z) —
5 av

z

eik'zﬁ(z) efik-z

+2j ds(z) e™* (,B'(z) e_ik"z—ﬁ(z)ie'ik"z)
b3 a”z

4[ ds(z) eik-ZB(z)J. ds(t) {z, t)(ﬁ'(t) e—ik'.f_B(t)_(i_e_;k'.,)

2

—4.[ ds(z) e’ g’ (Z)I ds(1)d(z, t)(ﬁ(;) =ikt ‘3(,)__6%.,)

'

+ d
4 s(2) 3

v z

2 ep(z) J ds(1)®(z, 1) (,3'(:) e -B(— e'“‘"')
§ az"r

+4 | ds(z) e g(z) f ds(r) = b(z, ()B(r) ™
s s v,

—4 I ds(z) aiz e 8(z) L ds(t) 8114 &(z, NB(He "
—4 | ds(z)e™**8(z) aa

v S L ¢

J. ds(t)—a—d)(z, 1) B(1) e (2.36)
s ai"r
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where 8, 8’ and y are, now and in the following

B(Z)_l—t(z)+ r(z)

(@)
T+ t(z)+r{z)

B'(z)= )

¥(z)=—-B(2)B'(2) (2.37)

3. Numerical experiments on ambiguities

As a first contribution to a study of ambiguities beyond the basic equivalences, we
have undertaken a set of numerical experiments where only one discontinuity curve
was assumed, no diffuse scattering, and the conditions of Born approximation hold
(they are checked by an evaluation of the next order). Hence

3

av,

Ak, k)=—2J’ ds(2)B(z) [ei“‘"")"’]+2j’ ds(z)B'(z) e'**)= (3.1
8 S
k is fixed, |k|=|k".

If B and B’ were complex numbers, it would be easy to show that a proper
continuation of 8 and B8, obtained by solving Dirichlet and Neuman problems, could
yield values of 8 and B’ on a different contour § such that the same A is obtained,
provided that there is not a mode of the domain between S and S. But imposing B, 8’
to be real is difficult in this analytic approach and it is less complicated to proceed in
a different way: our method of computation provides ‘ambiguities’ which are checked
by solving the direct problem independently for the two supposedly equivalent cases.
Hence, arguing lengthily on algorithm convergence is useless.

We assume that S and § are star-shaped with respect to the same centre. Their
equations are R = R(#) and R = R(6) where R, R are periodic (27). Hence

2

A(k, k') = 2i|k| J dog,(8) cos(g' — ) g KR (BIastE=0)

0

2@
—2ijk| j dog,(8) sin(6’ — §) e ~IKIR(Icos(e=0)

0

2
—2i|k| j- dO[h,(8)+ hy(6)] g ilkIR(8)cos(6'~8)

Q3

2
+2J. d{”(g) ewi\k}R(ﬂ}COS(ﬂ'-—-G) (3.2)
0
where
81(9) =R(9)3(9) eiLklR(e)cose g2(9)= R'(ﬂ)ﬁ(e) eﬂk\R(B)cose
h,(8)=g.(8) cos 8 h,(8) = g,(0) sin 6

I(e) — R(6)2+R1(6)2ﬁf(9) eiﬂkiR(B)cnsG

and the same formula holds for R, B, ﬁl We note P the problem with the data
{R(8), B(8) and B'(6}} and P with {ﬁ(e), B(8) and B'(8)}. It turns out that calculations
are most easy if, starting from an arbitrary star-shaped curve, we arrive at a circle (in
the figures 1 to 5, the initial problem P corresponds to the initial star-shaped curve,
and the equivalent problem P corresponds to a circle. They are respectively labelled
by @ and b in the figure number).
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Thus, we have to determine 3(8) and 8'(8) and R from the problem P data in
order to obtain the same results for a given value of |k| and all angles 8'. Calculating
the Fourier series with respect to 8, we ¢btain for P

A, =2(-i)" {l lJ’D d6g:(8)(Jow ([k|R(8)) ~ I, (([kIR(B))) e ™™

. k 29 )
i g 002, (KR8 +ya K RCE) 6

0

2
N - -
—i |—2—I L dog, (8)J,(|k|R(8))(e ("8 o ~ilnt ey

k 27 . -
A J degz(B)JH(IklR(G))(e_l("—l)ﬂ_ﬂe—l(n—i—l)ﬂ
0 L

2
+f del(8)J,(|k[R(8)) e‘i"a} (3.3}

and for P

A,,=zmv${ 2kl aldnsr=Jumi)Bot+ 27385
L

+|k| 2—1 im([(-’w+l n l) m+n+Jn(Jm+n+1_Jm+n—])]E?n

+(_1)n[(-’u+l_-]n—l)-]m n+-’ (Jm n+!._ m—n—‘;)]ém)

aQ
+2 3 "y ot (<) ﬁ;)} (34)
m=1
with J, =J, (|k|R) the Bessel functions, and B,,, 8. the Fourier coefficients of g(#)
and 8'(9).
To simplify the problem and get real values we note:

B, = A, + A%, C,=A,— A%, (3.5)

and we define B and C the same way.
The expressions for B, and C, are:

§n=zwﬁ{4lk|1,.u,,+l-.rnl)ﬁ'o+4fiﬁa+z|k| X (=17

X ([('In+l _Jn—1)12m+n +Jn(-’2m+n+1 - J'2n'|+|'1—1)]é'=2km
+(-1)"[(Jn+1 - Jn—I)Jmen +"rn(j2m—n+1 - JZm—n—l)]EZm)

+4 ( l)mj (Jlﬂ'l‘l'ﬂﬁ +( l)nJZrn nBZm)} (3'6)

ﬁMa

1

C~n=2 [4 z ( 1)mj (j2m+1+nB2m—+-l+( 1) J2m+l n32m+l)+2]k| E l)m

L m=0

X ([Jn-H - n—l)~,2m+]+n +Jn(-’2m+n+2_-,2m+n )]ﬁ2m+l + ("1)

X [(-In-Fl _JnI)sz*"l—-n+Jﬂ(12m~n+2_12m—rt)]EZM-H)}- (3-7)
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Discontinuous media and underdetermined scattering problems
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To determine 8, and §,, n=0, ..., +o, the following infinite system must be resolved:
A=A, B, =5, ¢ =G, n=1,...,+0 (3.8)

that we truncate at M approximately equal to twice the argument of the Bessel functions.
This choice is justified by the fact that small variations around this value do not really
modify the values of the scattering amplitude. Achieving the separation between real
and imaginary parts, we can reduce the truncated system (3.8) to four blocks, and four
matrices are inversed for calculating the Fourier coefficients of ﬁ and §'.

We check the equivalence by inserting the computed values of é and é’ into (3.2)
and calculating the result by numerical integrations. Notice that this way of proceeding
proves the equivalence, no matter how B and ' were calculated.

3.1. Computer results

Different initial curves, for several values of k, were investigated. Sensitivity with
respect to small modifications of k' or k" was also checked.

The curves represent a set of equivalent scattering problems for one incident angle
at fixed energy at any observation angle &', Figures 1-5 illustrate five different pairs
of scattering problems. They are characterized by:

(1) The value of |k[, i.e. |k1| where 1 is the unit length in the graph that shows the
discontinuity curve.

(2) An ‘initial’ discontinuity curve, of shape chosen, with chosen boundary condi-
tion, displayed in the figures labelled (a), where in addition the modulus and phase
of the scattering amplitude are represented {calculated by numerical integration).

(3) An equivalent discontinuity curve, of circular shape, with calculated boundary
conditions, displayed in the figures labelled (b), where in addition the modulus and
phase of the scattering amplitude are represented (calculated by numerical integration ).
_ Figures 6 shows, for a given initial problem, that the calculated values of equivalent
B and B’ depend only smoothly on the energy |k| (five values between |k!=3 and
lk|=13.5 are displayed). The calculations were made with Born approximation only
but we know from the numerical experiments that the approximation is sound in this
case. Note, incidentally, that the existence of an ambiguity does not require that the
Born term is a ‘good’ approximation of the scattering amplitude. When the Born terms
of two targets are equal, and the Born series converge fast enough (which admittedly
is not proved here), there are functional ways to infer from the ambiguity of Born
terms that of full amplitudes [4].

4. Physics

The impedance equation {2.1) is a model equation often used to give a first description
of several scattering experiments, including elastic waves or electromagnetic waves
(and usually in the simplest case of a few homogeneous domains). However, the
physical case which exactly fits the equation is that of acoustic waves in a medium
characterized by density p and Lamé parameter A, that are both twice differentiable
functions of x € R?, except on discontinuity surfaces. In this physical problem, the
equation for the pressure P at the fixed frequency o, is

oP .
Adivp~'grad P+ w’P=0 Pp! 5, continuous (4.1}
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and, in all physical cases, p and A reduce to numbers po, Ao in the most external
domain (}n.,. The problems (2.1) and (4.1) reduce to each other if we set
at=p! k= w’pory" V=0 pAr —pr ). (4.2)
Let us show now physical scattering problems, and couples among them, which
correspond to the cases we have studied. Any one of these scattering problems is
characterized by an internal domain ,, where A and p are twice differentiable
functions, bounded by the surface S from the external domain , where A and p are
numbers, A, and p, (which are assumed equal for all problems), Given § and B’ we
can determine o and da/dv, or p and ap/dv, on §7, i.e. their limit values as x> §
from {1y. In the formulae we used, we assumed (for the sake of simplicity) that diffuse
scattering is missing. Hence A and p should satisfy the constraints in £,

a
lim p, lim E-i— given for xS~ (43a)
A,p>0 (4.3b)
V+a 'Aa=0for xeQl, . {4.3¢)

where V and a are given by {4.2).

Conversely, as soon as {4.3a) and (4.3b) are satisfied, with 8 and 8’ determining
(4.3a), the scattering problem is completely defined because the Schrodinger chain is
defined (standard equivalence). An infinity of continuations of p and A satisfy (4.3).
We can see, for instance, simple ways to obtain two, demonstrated here on the simple
example of a circular domain Q= D(0, R).

In the first one, we assume that the Fourier coefficients of p are of the form #*
pr(r), with py(7) linear as a function of r. We easily construct them from the vaiues
at r=R, A(r, 9) is readily extracted from (4.3¢). The interest of such an interpolation
(and other polynomial ones) is that it is not difficult to check (4.36) and also to check
that V and « "'Ac are small if 8 and 8’ are small enough. Although this last property
is not required in our case, it could be used to extend ambiguities to cases where the
Born approximation applies but (4.3¢) is not required

In the second way, we can first assume that p and A are constanis up to = rg, and
determine Fourier coefficients such that their variations fit (4.3} in the ring rp,<r<R,
Although the consistency limitations (e.g. positivity) will [ead us to reject too-thin-
rings, those acceptable in general can be thin enough to show that ambiguities may
be generated by modifying only the scatterer’s external part. We can summarize the
standard equivalence by saying that *a scattering experiment at fixed frequency cannot

dicantanola Inr-n"\) A cn’lrl n nf course, tl'nc 1c a well I.'I‘Iﬂ\‘llﬂ rAr:uIt r")-f l\nf usually -
GlSeMang: 1115 SUdny

noticed for smooth media only.

Assume now that two scatterers have been constructed in the way described above,
and that they satisfy conditions (4.3) for different domains and different reflection and
slope coefficients. If the couples 5, S B, ,8 B, ,B correspond to one of the examples
demonstrated in section 3, and the illumination direction is the right one, the scattering
figures are identical. The lingarity of our Approximation shows that it is even possible
to construct an invisible scatterer (for one frequency and one direction of illumination).
Fortunately, the numerical experiments show that modifying this direction suppresses
the effect, so that it cannot be a moving object.

Our choice of numerical experiments shows that the size of the scatterer and of its
main features is of the order of one to a few wavelengths—the ambiguity is partly
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diffractive. Hence, it is certainly not similar to the well known ambiguities related to
shadow boundaries [3], for which A is much smaller than the scatterer size. Neither
is it similar to the fixed energy ambiguities in guantum mechanics, which do not hold
for a finite scatterer (although they may be a source of instabilities in its reconstruction)
14] and hold even for an infinity of illumination directions. On the other hand, our
numerical experiments are in a domain such that ‘Heisenberg uncertainties’ can also
be discarded as being mainly responsible for ambiguities. Needless te say, one may
always think and say that ambiguities are produced by a mixture of shadow boundaries,
diffractive uncertainties, standard equivalence, these being extreme clear cut cases, but
the mixture we have shown here has its own interest:.it shows that in diffractive
tomography, as in ray tomography, one frequency and one illumination direction are
not enough to determine a medium by acoustic scattering, even if all observation
directions are used. Furthermore, the fact that our ambiguity is continuous suggests
that there are special cases (we did not demonstrate them) where two {or maybe a
few) illumination directions at a single frequency are not sufficient to determine a
medium. Our examples are of course consistent with known theorems and should be
viewed in the context of mathematic analysis of boundary measurements [5], and of
tomograpnic experiments [6] as a warning in certain non-destructive sensings.
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