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Discontinuous media and underdetermined scattering problems 

F Dupuy and P C Sabatier 
Laboratoire de  Physique Mathbmatique, Universitb Montpellier, Contra1 CNRS G D R  264, 
34095 Montpellier cedex 5, France 

Received 15 November 1991, in final form 13 March 1992 

Abstract. The problem of ambiguities in trying to determine a shape by means of scattering 
experiments, with one or a few illuminating angles and all directions of receivers, is 
discussed by means of numerical experiments. The model equation gives agaod representa- 
tion of scattering of scalar waves which can take into account impedance discontinuities 
inside the scatterer. Physical problems include, for instance, acoustical waves in media 
where the density e and the Lamb parameter A may vary continuously everywhere except 
across a finite number of smooth surfaces through which they jump. Far the sake of 
simplicity, results are illustrated here in the two-dimensional case, with one discontinuity 
curve. The input is a closed curve of arbitrary shape, with arbitrary boundary conditions, 
chosen in such a way that the quadratic approximation (Bom term+secand-order term) 
is valid. The scattering amplitude is calculated far one incident angle. Then a circular curve 
is calculated, with appropriate boundary conditions, which yields the same scattering 
amplitude within the approximation, Variations of incident angles, frequencies and shapes 
are discussed for the calculated examples. The relevance of these results in the theory of 
non-destructive sensing is obvious. 

1. Introduction 

The problem of ambiguities in trying to determine the discontinuity shapes inside a 
material by means of scattering experiments with one or a few sources and all directions 
of receivers, is of obvious physical interest as well as importance in applications. In 
a previous paper [7], Sabatier gave the scattering theory corresponding to the impedance 
equation, with discontinuity surfaces corresponding to a jump in impedance and/or 
its normal derivative. Between these surfaces, the material was assumed to be 
inhomogeneous, but with a smooth variation of parameters only, such that the im- 
pedance was twice differentiable. This model is recalled in section 2 and adapted to 
the two-dimensional case, which was not. treated in [ l j .  In particular we give the 
formulae for Born and quadratic approximations for the scattering amplitude when 
the jumps of impedances and derivatives across the discontinuity curves are small, 
together with their variations in continuous parts. For the sake of simplicity the 
numerical experiments, described in section 3, focus on the case of one discontinuity 
curve and no impedance variation elsewhere. Equivalent shapes (with appropriate 
discontinuities of impedance and derivatives) are shown and discussed. 

2. The scattering problem 

We start from the impedance equation 
(K2 div a2 grad+ k2- V ( x ) ) p ( k :  x) = O  
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where k, X E  R2, a > 0 is defined inside domains flu, a , ,  . . . , f l N + I ,  such that ai na, = 
0 for any i # j ,  Rz = X?+‘ a,, and sa, = S; is the external boundary of Cl; ,  and the 
internal boundary of The domains are ordered from nu to a,,, and all finite 
except O N + , ,  which extends to infinity in all directions. In addition we assume that 
each Si is W 2 ,  and a is W 2  inside R2\S, where S = u E l  Si, with a(x) and aa(x) /au,  
going to finite limits at any point xi E Si, and U being a normal vector to S; pointing 
outward, i.e. in a,,, towards Si+, . At any point xp E S, labelling the + and - sides 
of vD as external and internal parts, we can characterize the jump of a and its derivative 
throughout S, by the following ‘singular data’: 
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transmission and reflection factors 

slope factor 

It is easy to see that if a and p have the same singular data at x, on S,, a l p  is 
continuous across S, at x, together with (a grad p - p  grad a )  . U. The solution r$ is 
to be continuous through W2, together with a2(a4/au) .  Now the basic equivalences in 
this problem are expressed by the following theorems, where a and r$ defined as above: 

Theorem 1. If p>O is @(R2\S), where S=uE, S,,  whereas a lp  is continuous 
through S together with a(ap /av ) -p (aa /av ) ,  and aAp -pan = O  at any XER’\S, 
then $:= arp/p is a solution of 

(p-2divp2grad+kZ-  V ( x ) ) $ ( k , x ) = O  x E w 2 \ s  (2.2) 

a and p are called ‘standard equivalent’, i.e. they correspond to the same scattering 
problem. 

7heorem 2. The function $ := aq is a solution of the chain of Schradinger equations 

(A+k’- V-a-’Aa)$(k ,x )=O x E R2\S (2.3) 

linked by the 

continuity through S of $/a and a(a$/Jv) -$(aa/Jv) .  (2.4) 

The impedance scattering problem was studied by Sabatier [ I ]  in the three- 
dimensional case. Here we write the results in the two-dimensional case, because the 
result we want to show belongs to this case. Because of theorem 2, there always exist 
two equivalent formulations of the same physical problem and it is useful to go back 
and forth from one to the other, In the impedance formulation of the scattering problem, 
~ ( k ,  x) is sought such that 

(a-’div a2grad+ k2- V(x))p(k,x)=O X E R 2  (2.5) 

rp, := a ( x ) q ( k ,  x)-exp[ik. x]  is Sommerfeld outgoing, i.e. in two-dimensional cases 
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In the Schrodinger chain formulation, p(k, x )  is sought such that 

( A  + k2 - V -  K ' A a ) $ ( k ,  x )  = 0 x E w 2 \ s  

Q(k, x )  -exp[ik. XI  is Sommerfeld outgoing. (2.9) 
As in the three-dimensional case, it is possible to prove that one can construct a Green 
function that corresponds to discontinuities without potentials, i.e. which is a 
solution of 

( A , + ~ ~ ) G ( x , ~ ) =  - s ( ~ -  Y)  X , Y € I W 2  (2.10) 

completed by (2.8) and the Sommerfeld condition (2.6). This Green function can be 
constructed by means of the Helmholtz Green function 

I 
@ ( X , Y ) = 4 H ~ ) ( l k l I X - y l )  x, y E w2, x # y (2.11) 

and by solving surface integral equations with compact operators, i.e. G ( x , y )  is 
identified as the resolvent kernel of the following system. 

(A, + k 2 ) u ( x )  = - f i x )  X€R2\S (2.12) 

(2.13) 
Ju+(x) JLX+(X) a u - ( x )  aa-(x)  

av  av av J U  
"(x)-- u'(x)-- - K ( x )  -- u-(x)  - 
u'(x)/a'(x) = U - ( X ) / a - ( X )  X € S  

u ( x )  is Sommerfeld outgoing (2.6). 

u ( x )  reads 

(2.14) 

*I = * for X € s ,  

a '+(X)+a ' - (x)  
a+(x)+ K ( X )  

y ( x )  = 



4256 

and the surface operators S, K, K’, T defined from a surface Si to S, by: 
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(2.22) 

We have the following result: 

Theorem 3. We assume that p, p’, y, Jl are in %?‘(S) and 4 in W(S). If N ( l  - p K )  = O  
and N(1- B/(I+ 6’)) = 0, then the system (2.18) has a unique solution 

Jl = (1 - PK)-‘P(2F + S + )  (2.23) 
4 [ ( l + P * ) l - B ] - ’ A F  (2.24) 

with: 
A F  = 2/3F’-2[6’+ ( y l + P ’ K  -PT)( l -PK)-’p]F (2.25) 

(2.26) 
where the operator C is complex and O((lp112) as IIpII + O .  

That A and B are compact operators was proved in the three-dimensional case [ l ]  
and can be proved in the same way for two dimensions. Then one can use G(x, y )  in 
order to derive the Lipmann-Schwinger equation of the problem 

B = - ( y l  +/?‘K)(l -pK)-’ /3S+ PK’ -  p’S+ C. 

W , x ) =  d4.k x)-jm2,s G(x ,y ) [V(y)+n~’Au(~) l J l (Sy)  dy (2.27) 

where x E W2\S and 

(2.28) 

Hence the scattering is separated into two steps, the scattering by discontinuities, and 
that due to diffuse scattering in the presence of discontinuities. The former is described 
by 

if X E ~ ~ , ,  

otherwise. 

which is equal to (2.28) but can also be obtained as the solution of 
( A +  k2)$in(k, x ) = O  X€R2\S 

Jlinln and n--Jlin- JJlin Ja continuous/S (2.29) 
J u  Jv 

Jli,(k, x)-exp[ik. x] is Sommerfeld outgoing. 
We have too, a relation between $in and G(x, y ) :  

ei[ lkl l r l+n/41 , / 2 J l i n ( - E . y ) + o ( p )  1 ‘when 1x1”’. (2.30: 

(8~ lk l ) ”21~ l  
G(x.y)= 

Applying Green’s theorem to $in(k, y )  and @(x, y) inside JyJ S R, and letting R + 9 
we obtain 



Discontinuous media and underdetermined scaftering problems 4257 

Substituting this result in (2.27) yields 

and combining with (2.31) finally yields 

(2.33) 

where A = A o + A ,  is the sum of the scattering amplitude due to reflectors only and 
the diffuse scattering, the reflectors being present. 

It is possible to trace back in the calculations the first and second-order terms with 
respect to the potentials size and to r,,, sp, t,,. The procedure is the following: with the 
hypothesis of theorem 3, we obtain the expansion up to second order of $ and d, 

(2.34) 

where llpll is S ~ p ( I I p l / ~ y ~ , ,  IIp'IIulCs,) and it is easy to see that if IIpII is small enough, 
the conditions of vaiidity of theorem 3 hoid. we buiid Gjx, y j  ana deduce $," with 
(2.30) and we get the scattering amplitude at the first (Born approximation) and second 
order (quadratic approximation). 

Then one can reduce the result to its simplest form by using the standard equivalence 
to obtain the Born approximation 

ds(z)p(z)d[e ' IC~" . ' .=  1+2 j ds(z)P'(z)e"*-""' 
,=o s, J vz 

[ V ( y ) + u - ' A n ( y ) ]  ei(k-k'J'y dy 

and the quadratic approximation (only A, is given): 

(2.35) 

d 
Ao(k',k)=-2 ds(z)-ee""p(Z)e~'*'' 

1s Jv,  

-4 Is ds(z) e'*''p'(z) ISds(t)@(z, t )  P ' ( t )  
J 

+4J'sdr(z)e'*~'p'(z) Isds(t)-@(z, a f)p(t)e-'*"' 
J 

- 4 j s d s ( z ) e ' k ~ . ' P ( ~ ) L ~  ds(f)-@(z, J t)p(r)e-'*"' 
Jvz s J v, 

(2.36) 
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where p, p' and y are, now and in the following 
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(2.37) 

3. Numerical experiments on ambiguities 

As a first contribution to a study of ambiguities beyond the basic equivalences, we 
have undertaken a set of numerical experiments where only one discontinuity curve 
was assumed, no diffuse scattering, and  the conditions of Born approximation hold 
(they are checked by an evaluation of the next order). Hence 

] + 2  ds(z)p'(z) ei(k-k').z (3.1) A,(k', k)=-2 ds(z)p(z)d[e ' (k-k ' ) '~  

k is fixed, Ik( = lk'(. 
If p and p' were complex numbers, it would be easy to show that a proper 

continuation of p and p',  obtained by solving Dirichlet and Neuman problems, could 
yield values of p and p' on a different contour s such that the same A is obtained, 
provided that there is not a mode of the domain between S and S. But imposing p, p' 
to be real is difficult in this analytic approach and it is less complicated to proceed in 
a different way: our method of computation provides 'ambiguities' which are checked 
by solving the direct problem independently for the two supposedly equivalent cases. 
Hence, arguing lengthily on algorithm convergence is useless. 

We assume that S and s are star-shaped with respect to the same centre. Their 
equations are R = R(B) and R =E((?) where R, I? are periodic ( 2 ~ ) .  Hence 

A(k, k')=2ilkl lozm dOg,(O) cos(8'-8) e~"k~R 'B~Cos(B ' -8~  

J* I, J U, 

-2i(kl ja2T dOg,(e) sin(8'- 8) e - i ~ k ~ R ' ~ ) c ~ s ( ~ ~ ~ )  

-2ilk( lozT d8[h1(!3)+ h2(f3)] e--ilk'R(a)cos'B'--B) 

+ 2  [ozm de1(8) e-ilklR(s)cos(R-8) (3.2) 

where 

gl(e) = ~ ( e ) p ( e )  ei'klR(B)cor' 

h , ( e )  = g,(e) COS e 
/ ( e )  =JR(e) '+ Rye)*pye)  e'lk'R(B)cor8 

g2(e) = R'(e)p(e)  e i lk lR(a )C~3B 

h,(B)=g,(B)sin 0 

and the same formula holds for I?, p, 6;. We note P the problem with the data 
{R(e),p(e)andp'(B)}and with(I?(O),p(O)andp'(!3)). Itturnsoutthatcalculations 
are most easy if, starting from an arbitrary star-shaped curve, we arrive at a circle (in 
the figures 1 to 5, the initial problem P corresponds to the initial star-shaped curve, 
and the equivalent problem P corresponds to a circle. They are respectively labelled 
by a and b in the figure number). 
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Thus, we have to determine B ( 8 )  and b ' ( 8 )  and k from the problem P data in 
order to obtain the same results for a given value of lkl and all angles 8'. Calculating 
the Fourier series with respect to e', we obtain for P 

. . .  
To simplify the problem and get real values we note: 

and we define Bn and Ct the same way. 
The expressions for B. and C. are: 
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To determine p,, and p,, n = 0,. . . , +a, the following infinite system must be resolved: 

F Dupuy and P C Sabatier 
- - 

. - - 
A,  = A, B, = B. C, = C" n = 1,. ..,+OD (3.8) 

that we truncate at M approximately equal to twice the argument ofthe Bessel functions. 
This choice is justified by the fact that small variations around this value do not really 
modify the values of the scattering amplitude. Achieving the separation between real 
and imaginary parts, we can reduce the truncated system (3.8) to four blocks, and four 
matrices are inversed for calculating the Fourier coefficients of b and p. 

We check the equivalence by inserting the computed values of b and 8' into (3.2) 
and calculating the result by numerical integrations. Notice that this way of proceeding 
proves the equivalence, no matter how and b' were calculated. 

3.1. Computer results 

Different initial curves, for several valyes of k, were investigated. Sensitivity with 
respect to small modifications of k' or k' was also checked. 

The curves represent a set of equivalent scattering problems for one incident angle 
at fixed energy at any observation angle 8'. Figures 1-5 illustrate five different pairs 
of scattering problems. They are characterized by: 

(1) The value of Ikl, i.e. lkll where 1 is the unit length in the graph that shows the 
discontinuity curve. 

(2) An 'initial' discontinuity curve, of shape chosen, with chosen boundary condi- 
tion, displayed in the figures labelled ( a ) ,  where in addition the modulus and phase 
of the scattering amplitude are represented (calculated by numerical integration). 

(3) An equivalent discontinuity curve, of circular shape, with calculated boundary 
conditions, displayed in the figures labelled ( b ) ,  where in addition the modulus and 
phase of the scattering amplitude are represented (calculated by numerical integration). 

Figures 6 shows, for a given initial problem, that the calculated values of equivalent 
b and 6' depend only smoothly on the energy JkJ (five values between J k l = 3  and 
(k(  =3.5 are displayed). The calculations were made with Born approximation only 
but we know from the numerical experiments that the approximation is sound in this 
case. Note, incidentally, that the existence of an ambiguity does not require that the 
Born term is a 'good' approximation of the scattering amplitude. When the Born terms 
of two targets are equal, and the Born series converge fusr enough (which admittedly 
is not proved here), there are functional ways to infer from the ambiguity of Born 
terms that of full amplitudes 141. 

4. Physics 

The impedance equation (2.1) is a model equation often used to give a first description 
of. several scattering experiments, including elastic waves or electromagnetic waves 
(and usually in the simplest case of a few homogeneous domains). However, the 
physical case which exactly fits the equation is that of acoustic waves in a medium 
characterized by density p and Lam6 parameter A, that are both twice differentiable 
functions of x s R 2 ,  except on discontinuity surfaces. In this physical problem, the 
equation for the pressure P at the fixed frequency o, is 

(4.1) 
JP 
J u  

A div p- '  grad P + o ' P  = O  P, p-' - continuous 
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and, in all physical cases, p and A reduce to numbers pa, A. in the most external 
domain RN,,. The problems (2.1) and (4 .1)  reduce to each other if we set 

Let us show now physical scattering problems, and couples among them, which 
correspond to the cases we have studied. Any one of these scattering problems is 
characterized by an internal domain a,, where A and p are twice differentiable 
functions, bounded by the surface S from the external domain CL, where A and p are 
numbers, A. and po  (which are assumed equal for all problems). Given p and p' we 
can determine 01 and a a l d u ,  or p and aplav,  on S - ,  i.e. their limit values as x + S  
from a,,. In the formulae we used, we assumed (for the sake of simplicity) that diffuse 
scattering is missing. Hence A and p should satisfy the constraints in fi0 

an 
lim p ,  lim ;L given for x E S -  (4.3a) 

A \ , P > O  (4.36) 

(4.3c) 

av 

I/+ u-lha = 0 for x E n,, 
where V and a are given by (4.2).  

Conversely, as soon as (4 .3a )  and (4.36) are satisfied, with p and p' determining 
(4 .3a) ,  the scattering problem is completely defined because the Schrodinger chain is 
defined (standard equivalence). An infinity of continuations of p and A satisfy (4.3).  
We can see, for instance, simple ways to obtain two, demonstrated here on the simple 
example of a circular domain CL,= D(0, R ) .  

In the first one, we assume that the Fourier coefficients of p are of the form r2 
pNjr j ,  wiih p N i r j  linear as a Function of r. w e  easiiy construct them From the vaiues 
at r = R .  A(r, 0) is readily extracted from ( 4 . 3 ~ ) .  The interest of such an interpolation 
(and other polynomial ones) is that it is not difficult to check (4.36) and also to check 
that V and a-lA01 are small if p and p' are small enough. Although this last property 
is not required in our case, it could be used to extend ambiguities to cases where the 
Born approximation applies but ( 4 . 3 ~ )  is not required. 

determine Fourier coefficients such that their variations fit (4.3) in the ring r a s  r s  R. 
Although the consistency limitations (e.g. positivity) will lead us to reject too-thin 
rings, those acceptable in general can be thin enough to show that ambiguities may 
be generated by modifying only the scatterer's external part. We can summarize the 
standard equivalence by saying that 'a scattering experiment at fixed frequency cannot 

noticed for smooth media only. 
Assume now that two scatterers have been constructed in the way described above, 

and that they satisfy conditions (4 .3 ) for  djfferent domains and different reflection and 
slope coefficients. If the couples S, S, p, p, p', b', correspond to one of  the examples 
demonstrated in section 3, and the illumination direction is the right one, the scattering 

to construct an invisible scatterer (for one frequency and one direction of illumination), 
Fortunately, the numerical experiments show that modifying this direction suppresses 
the effect, so that it cannot be a moving object. 

Our choice of numerical experiments shows that the size of the scatterer and of its 
main features is of the order of one to a few wavelengths-the ambiguity is partly 

In the secofid .way, iafi first assur,e ~ an: are cons;anis up io io,  and 

&se-:ang!e !cca!!y )\ and p' .  Of col?rse, ?hiS is a GXD"'" [21, but usEa!!y 

figxres Ire  ide.tk.!. n . e  !inearicy of our appmxima!ion shows th.! i! is we!? possib!e 



4268 F Dupuy and P C Sabatier 

diffractive. Hence, it is certainly not similar to the well known ambiguities related to 
shadow boundaries [3], for which A is much smaller than the scatterer size. Neither 
is it similar to the fixed energy ambiguities in quantum mechanics, which do not hold 
for a finite scatterer (although they may be a source of instabilities in its reconstruction) 
[4] and hold even for an infinity of illumination directions. On the other hand, our 
numerical experiments are in a domain such that ‘Heisenberg uncertainties’ can also 
be discarded as being mainly responsible for ambiguities. Needless to say, one may 
always think and say that ambiguities are produced b y  a mixture of shadow boundaries, 
diffractive uncertainties, standard equivalence, these being extreme clear cut cases, but 
the mixture we have shown here has its own interest:.it shows that in diffractive 
tomography, as in ray tomography, one frequency and one illumination direction are 
not enough to determine a ‘medium by acoustic scattering, even if all observation 
directions are used. Furthermore, the fact that our ambiguity is continuous suggests 
that there are special cases (we did not demonstrate them) where two (or maybe a 
few) illumination directions at a single frequency are not sufficient to determine a 
medium. Our examples are of course consistent with known theorems and should be 
viewed in the context of mathematic analysis of boundary measurements [SI, and of 
tomograpnic experiments [6] as a warning in certain non-destructive sensings. 
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